205 research outputs found

    The agent programming language meta-APL

    Get PDF
    Abstract. We describe a novel agent programming language, Meta-APL, and give its operational semantics. Meta-APL allows both agent programs and their associated deliberation strategy to be encoded in the same programming language. We define a notion of equivalence between programs written in different agent programming languages based on the notion of weak bisimulation equivalence. We show how to simulate (up to this notion of equivalence) programs written in other agent programming languages by programs of Meta-APL. This involves translating both the agent program and the deliberation strategy under which it is executed into Meta-APL.

    Qualitative spatial logics for buffered geometries

    Get PDF
    This paper describes a series of new qualitative spatial logics for checking consistency of sameAs and partOf matches between spatial objects from different geospatial datasets, especially from crowd-sourced datasets. Since geometries in crowd-sourced data are usually not very accurate or precise, we buffer geometries by a margin of error or a level of tolerance a E R≥0, and define spatial relations for buffered geometries. The spatial logics formalize the notions of 'buffered equal' (intuitively corresponding to `possibly sameAs'), 'buffered part of' ('possibly partOf'), 'near' (`possibly connected') and 'far' ('definitely disconnected'). A sound and complete axiomatisation of each logic is provided with respect to models based on metric spaces. For each of the logics, the satisfiability problem is shown to be NP-complete. Finally, we briefly describe how the logics are used in a system for generating and debugging matches between spatial objects, and report positive experimental evaluation results for the system

    Verifying systems of resource-bounded agents

    Get PDF
    Approaches to the verification of multi-agent systems are typically based on games or transition systems defined in terms of states and actions. However such approaches often ignore a key aspect of multi-agent systems, namely that the agents’ actions require (and sometimes produce) resources. We briefly survey previous work on the verification of multi-agent systems that takes resources into account, and outline some key challenges for future work

    Resource logics with a diminishing resource: extended abstract

    Get PDF
    Model-checking resource logics with production and consumption of resources is a computationally hard and often undecidable problem. We show that it is more feasible under the assumption that there is at least one diminishing resource, that is, a resource which is consumed by every action

    Coalition logic with individual, distributed and common knowledge

    Get PDF
    Coalition logic is currently one of the most popular logics for multi-agent systems. While logics combining coalitional and epistemic operators have received considerable attention, completeness results for epistemic extensions of coalition logic have so far been missing. In this paper we provide several such results and proofs.We prove completeness for epistemic coalition logic with common knowledge, with distributed knowledge, and with both common and distributed knowledge, respectively. Furthermore, we completely characterise the complexity of the satisfiability problem for each of the three logics. We also study logics with interaction axioms connecting coalitional ability and knowledge
    • …
    corecore